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Abstract
The present study demonstrates natural inhibition of xanthine oxidase enzyme (XO) 
in the treatment of gout disease where the essential oil compounds of Myrtus com-
munis plant were used. To understand the interaction and effect of this compounds 
with xanthine oxidase enzyme; two computational chemistry theoretical methods 
were used; the molecular docking, and molecular dynamics simulations. The nat-
ural compounds with percentage higher than 0.1% containing M. communis plant 
were investigated such as α-pinene, isobutyl isobutyrate, myrtenol, myrtenyl acetate, 
eucalyptol, neryl acetate, and a-therpineole. Results reveal that the stability of natu-
ral compounds-XO complexes increased the complementarity between the ligands 
and the enzyme. The compounds containing plant with medium percentage demon-
strated the best score and high activity and strong interaction of 2.5 Å, such as the 
neryl acetate and a-therpineole with energy of − 6.1085 kcal/mol and − 5.1994 kcal/
mol. Also, the neryl acetate ligand can inhibit XO and interfere with Gly 231 and 
Lys 232. In addition, the interaction of the bulky groups generates a conformational 
rearrangement within the active site pocket, which is likely to increase complemen-
tarity and, consequently, the activity.
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Introduction

Gout is a condition characterized by the accumulation of urate crystals in the 
joints, leading to episodes of gouty arthritis. Its prevalence appears to be increas-
ing according to epidemiological studies. Hyperuricaemia, which corresponds to 
an excess of uric acid in the blood, is a major risk factor for the development 
of gout [1]. Xanthine oxidase (XO) plays a crucial role in urate biosynthesis by 
catalyzing the final stages of purine degradation [2]. It is a key enzyme which 
converts hypoxanthine and xanthine into uric acid, their overproduction leads to 
gout. The XO activity inhibition is an important therapeutic strategy for reducing 
uric acid production and treating gout [3]. Until now, there is a clinical need for 
the development of new chemical compounds for xanthine oxidase (XO) inhibi-
tion, and offering new treatments for gout [4].

However, research in this area remains active, as the exploration and discover-
ing of new molecular skeletons. Several synthetic compounds have been used for 
xanthine oxidase inhibition such as chalcones [5], xanthone [6], rutin [7], triazole 
[8], and other heterocycle compounds [9]. Also, various inhibitors were devel-
oped such as allopurinol, and febuxostat. Unluckily, these drugs have side effects 
like skin rashes, hepatitis, and fever [10]. On the other hand, the use of ancient 
source as medicinal plant stays very efficiency where several groups research 
new xanthine oxidase (XO) inhibitors from natural source. Different natural com-
pounds exhibits high activity such as flavonoids [11], flavonols [12], hydroxycin-
namic acids [13], tannins [14], stilbenes [15].

To discover new drugs, in silico and computer-aided drug design methods 
have attracted scientific because it considered faster, cheaper and more effec-
tive solutions [16]. For example, virtual screening, is a high-through put method 
that allows large databases of compounds which can be identified with potential 
activity against XO. In addition, molecular dynamics (MD) simulations of pro-
tein–ligand complexes are used to analyse the stability and thermodynamic prop-
erties of these interactions [17, 18]. These simulations provide valuable infor-
mation about the protein’s response to ligand binding at the atomic level [19]. 
By combining these approaches with chemical synthesis techniques [20] and bio-
logical assays, it is possible to identify new drug candidates derived from natural 
products, thus offering new therapeutic options for patients.

Because of the various bioactive compounds containing the Myrtus commu-
nis plant, it has been used in traditional medicine in the treatment of bleeding, 
headache, conjunctivitis, pulmonary and skin diseases [21]. Several researches 
reported in vivo and in vitro strong activity of their extract [22]. Essential oil of 
M. communis plant containing α pinene, ocymene, cineole, 4-carene, linalool, ter-
pineol and geranyl acetate, show a potential antioxidant, antimutagenic [23], anti-
microbial [24], antifungal [25], antibiofilm, cytotoxic, and anti-acetylcholinest-
erase activity [26]. These compounds were used also in human neutrophils ROS 
inhibition [27], amylase inhibitor [28].

For the xanthine oxidase (XO) inhibition, the M. communis plant was not 
reported. So, for the study of their activity in the XO inhibition, theatrical 
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approach is necessary to known the essential oil compound presented high inter-
action and ability. In our study, we used molecular modeling and molecular 
dynamics (MD) simulations to identify potential natural products targeting the 
xanthine oxidase enzyme (XO); and its inhibition by the major compounds of the 
M. communis’s essential oil for the gout disease treatment.

Materials and methods

The ligands and enzyme were constructed using Molecular Operating Environment 
(software MOE).

Enzyme construction and geometry optimization

The xanthine oxidase enzyme was downloaded from the Book Haven Protein Data 
Bank [29] (access code 3EUB) [30]. The three-dimensional structure of the enzyme 
was obtained by X-ray diffraction with a resolution (2.60 Å) and R-Value Free 0.268 
(Fig. S1). In general, protein structures with a resolution between 1.5 and 2.9 Å are 
excellent quality for studying the enzyme [31, 32].

Through the use of molecular modeling, we have simplified the enzyme leav-
ing only a single enzyme chain and a reference ligand, without extra protein chains, 
water molecules and co-crystallization molecules. This modification help us to give 
more detail in the case of interactions and the superposition between the enzyme 
and ligands.

In the case of enzymes, the active site is crucial because it is the place where 
enzyme catalyzed the chemical reactions. The enzyme is made up of several active 
sites composing amino acids which play an essential role by providing key residues 
to interact with the substrates. Once the enzyme had been prepared, we carried out a 
molecular mechanics calculation to find the most stable conformation (Fig. S2) [33].

Identification of the oil components

The common myrtle, is a typical Mediterranean shrub that is deeply rooted in the 
culture and beliefs of the people who live along the Mediterranean coast. In addition 
to these beliefs, it has long been credited with medicinal properties [34]. The com-
position of essential oil was extracted using steam distillation which dominated by 
a high fraction of oxygenated monoterpenes, representing 80.9% of its composition. 
Major components were myrtenyl acetate (38.7%), eucalyptol (12.7%), α-pinene 
(13.7%), and linalool (7.00%, Table 1) [35].

Construction and ligands optimization

A study of the chemical composition of M. communis essential oils identified 27 
compounds. We reduced the number to 10 compounds which have the percentage 
greater than one. Oral administration is the most practical route. Lipinski’s rule is a 
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rule of thumb used by some researchers as a guide when designing a drug, as well as 
their toxicity studies. This study enabled us to reduce the number of compounds to 
nine (Table S1).

Molecular docking

The interaction between a protein and its substrate is a complex process that relies 
on several aspects, including the affinity between the two molecules, the distances 
between the amino acids of the enzyme’s active site and those of the inhibitors, as 
well as the interaction energy, these aspects affect the enzymes function [14]. The 
affinity between a protein and its substrate refers to the binding strength between 
two molecules. This affinity is often determined by non-covalent interactions such as 
hydrogen bonds, electrostatic interactions, van der Waals, and hydrophobic interac-
tions [36]. The active site of an enzyme is the region where the substrate binds and 

Table 1  Profile of common 
myrtle essential oil extracted by 
steam distillation

Compounds Percentage

1 Isobutyl isobutyrate 3.00
2 α-Thujene 0.30
3 α-Pinene 13.70
4 B-pinene 0.10
5 δ-3-Carene 0.10
6 Myrcene 0.30
7 δ-Terpinene 0.10
8 Sabinene 0.50
9 Limonene Trace
10 E-ocimene 0.10
11 A-terpinolene 0.20
12 Eucalyptol 12.7
13 Linalool 7.00
14 Trans-pinocarveol 0.20
15 Terpinen-4-ol 0.20
16 A-terpineol 1.80
17 Myrtenol 3.50
18 Linalyl acetate 2.50
19 Trans-pinocarveyl acetate 0.70
20 Myrtenyl acetate 38.7
21 P-menth-1-en-8-ol acetate 0.39
22 Neryl acetate 2.00
23 Geranyl acetate 0.40
24 Trans-cryophyllene 0.20
25 A-humulene 0.31
26 Caryophyllene oxide 0.50
27 Humulene epoxide 1.30
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the chemical reactions take place. The amino acids of the active site interact specifi-
cally with the substrate, forming an enzyme–substrate complex. When an inhibitor 
binds with active site, it can block access to the substrate or disrupt the interactions 
necessary for catalysis [37]. The interaction energy between a protein and its sub-
strate or an inhibitor is a measure of the energy required to form and maintain the 
enzyme–substrate complex and it is determined by the intermolecular forces men-
tioned above. Low interaction energy may indicate low affinity between the mol-
ecules and interpreted by less efficient catalysis and less specific inhibition [38].

Molecular dynamics

Knowledge at an atomic level of the structural and dynamic aspects of organized 
systems is particularly important for understanding complex molecular functions. In 
general, the steepest descent algorithm is used at the beginning, for 100 to 200 steps. 
Then the conjugate gradient algorithm can be used to complete the minimization 
until convergence. Convergence in the Steepest Descent algorithm is slow, but this 
method is extremely robust. This algorithm is mainly used when conformations are 
far from their energy minimum [39].

The molecular dynamics of the complexes was carried out using Hyperchem7.5 
professional version software [40]. We began the dynamics by initializing the sys-
tem at t = 0, r(t) = 0, and the initial structure, previously minimized. We then heated 
the system to 300 K for 1000 steps with an integration step of 1 fs. The velocities are 
readjusted to keep the temperature constant because the exchange between kinetic 
energy and potential energy [41]. The simulation time for molecular dynamics was 
35 ps and 100 ps.

Results and discussion

We used molecular docking to predict how the ligand binds to the active site of the 
XO enzyme, by searching for the most stable binding conformations. This method 
enabled us to select the complex (ligand–receptor) showing the best interaction with 
the lowest energy, which could provide important information for drug design or 
understanding the underlying molecular mechanisms. The results of this study are 
presented in Table 2.

The docking process generally involves the following several steps such as struc-
ture preparation, search for conformations, interaction assessment between the 
ligand and the protein, analysis and selection of poses, and experimental validation 
[42, 43].

A 2D molecular screen method was assigned to MOE software, which is designed 
to visualize the active sites of protein–ligand complex [45]. The ligand is arranged 
and rendered using an improved version of the 2D representation arrangement algo-
rithm, and protein residues are arranged around it to indicate spatial proximity links 
[46]. The interactions between 2.5 and 3.1 Å were considered strong, those between 
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3.1 and 3.55 Å were assumed to be medium and those above 3.55 Å were considered 
weak [47].

Table 2 demonstrates the energy of each compound complex. The result shows 
that the neryl acetate + XO complex has the best score with energy of − 6.1085 kcal/
mol and it is the most active. Also, the a-therpineole + XO complex is character-
ized by the energy of − 5.1994 kcal/mol. The mytenyl acetate + XO, myrtenol + XO, 
eucaliptol + XO, α-pinene + XO, isobutyl isobutyrate + XO, linalool + XO, lin-
alyl acetate + XO complexes present energies of − 4.8746  kcal/mol, − 4.8517  kcal/
mol, − 4.7286  kcal/mol, − 4.6538  kcal/mol, − 4.2522  kcal/mol, − 4.2462  kcal/
mol, − 4.0196  kcal/mol. The highest energy − 3.8517  kcal/mol was obtained with 
myrtenol + OX complex.

It should be noted that all the inhibitors from both parties interact with the xan-
thine oxidase (XO) enzyme. These results show that the orientation of the ligands 
plays a very important role in the positioning of the ligands in the active site of 
the enzyme, and it can be concluded that the introduction of bulky groups causes 
a conformational rearrangement within the active site pocket, which is likely affect 
complementarities and therefore activity [48, 49].

Figs. 1 and 2 illustrate the interaction energy of α-pinene + XO complex and 
a-therpineole + XO complex. The α-pinene + XO complex (Fig. 1), with interac-
tion energy of − 4.6538 kcal/mol, does not exhibit any type of binding. In the case 
of a-therpineole + XO complex, the hydrogen bond-type interaction presented 
with residue Tyr 381, a distance of 3.18 Å, and an energy of − 0.6 kcal/mol, sug-
gesting that the a-therpineole ligand can inhibit XO and interfere with residue Tyr 
381 (Fig. 2). In addition, the eucaliptol + XO complex (Fig. S3) has a hydrogen 
bond-type interaction; H-acceptor with residue Arg 147, with a distance of 2.98 Å 
and energy of − 1.8 kcal/mol. This confirms that the ligand eucalyptol can inhibit 
XO and interfere with residue Arg 147. The isobutyl isobutyrate + XO complex 
(Fig. S4) has a hydrogen bond-type interaction with Arg 167, with a distance of 

Table 2  Energy balance of the best complexes formed

S the final score; the score of the last step, rmsd-refine the root mean square deviation between the pose 
before refinement and the pose after refinement, Enerie_conf the energy of the conformer, E-place the 
score of the placement phase, E-refine the score of the refinement step and the number of conformations 
generated per ligand [44]

Ligands Band energy 
(kcal/mol)

Rmsd-refine Enerie-conf E-place E-refine

α-Pinene  − 4.6538 0.6020 42.6422  − 44.3352  − 3.2604
a-Therpineole  − 5.1994 0.5630 22.0125  − 47.4399  − 10.9302
Eucaliptol  − 4.7286 1.1878 46.0102  − 44.4291  − 8.4209
Isobutyl isobutyrate  − 4.2522 1.5525  − 2.9641  − 53.4330  − 13.0702
Linalool  − 4.2462 1.0354 17.0308  − 44.9977  − 4.6837
Linalyl acetate  − 4.0196 1.2930 33.7125  − 55.4214 0.9043
Myrtenol  − 3.8517 1.7441 29.3311  − 44.2351  − 0.1263
Mytenyl acetate  − 4.8746 1.1059 28.2423  − 45.4765  − 13.2145
Neryl acetate  − 6.1085 1.0237 18.4276  − 61.4137  − 12.0745
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3.32  Å and an energy of − 1.1  kcal/mol. It presents also two other interactions 
with the carbon of the isobutyl isobutyrate ligand and the Trp 416 residue (H–Pi 
bond type) with distances of 3.94 and 4.58, and energy of − 0.7  kcal/mol. This 
result shows that the isobutyl isobutyrate ligand can inhibit XO and interfere with 
residues Arg 167 and Trp 416.

Fig. 1  Interaction diagram of α-pinene + XO complex

Fig. 2  Interaction diagram of a-therpineole + XO complex
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Fig. S5 presents the interaction of linalool which has a hydrogen bond (H-donor) 
strong interaction with Tyr 258, a distance of 3.07 Å, and energy of − 1.1 kcal/mol. 
Also, linalyl acetate has hydrogen bond interactions with Arg 167 and Tyr 381 (Fig. 
S6), with distances of 3.15–2.81  Å and energies of − 2.7 and − 1.9  kcal/mol, and 
another interaction bond with the ligand carbon Trp 416 residue with a distance 
of 4.49 Å and energy of − 0.7 kcal/mol. This demonstrates that the linalyl acetate 
ligand can inhibit XO and interfere with the Arg 167, Tyr 381 and Trp 416 residues.

Myrtenol (Fig. S7) exhibits two hydrogen bond-type interactions; the H-accep-
tor, and H-donor with residues Glu 511 and His 260. The distances were 3.05 and 
2.94 Å with energies of − 1.1 and − 2.7 kcal/mol, suggesting that the myrtenol ligand 
can inhibit XO and interfere with residues Glu 511 and His 260.

The mytenyl acetate (Fig. S8) exhibits a strong hydrogen bond interaction with 
Arg 270, a distance of 2.97 Å, and energy of − 2.9 kcal/mol. However, neryl acetate 
(Fig. S9) displays hydrogen bond interactions with Gly 231 and Lys 232, with dis-
tances of 3.48 Å and 2.98 Å, and energies of − 0.9 and − 9.4 kcal/mol. This indicates 
that the neryl acetate ligand can inhibit XO and interfere with Gly 231 and Lys 232 
[50].

Once all the complexes were formed, we performed a geometry optimization 
and a time-dependent molecular dynamics calculation to search for the most stable 
conformation [51]. The variation of energy for the first 35 ps of higher compounds 
content such as myrtenyl acetate, eucaliptol, and α-pinene was illustrated in Fig. 3. 
The compounds presented a stable energy in the range of 900–1400 kcal/mol, and 

Fig. 3  Variation in the potential energy of the myrtenyl acetate + XO complex (a), and eucaliptol + XO 
complex (b)
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200–800 kcal/mol. Also, the total energy was well-conserved even though uses of 
the same time step.

Also, the same variation of energy was presented for other compounds for the 
first 100 ps (Fig. S10). The results reveal that compounds have the same stability 
and maintain the same types of interactions with the residues of the active site of the 
target (Fig. 4).

Conclusion

We studied the approach of xanthine oxidase (XO) with the majority compounds 
of the essential oil of the plant M. communis; in a theoretical way by two methods 
of computational chemistry: molecular docking, molecular dynamics simulations. 
The study is based on the calculation of interaction energies and bond distances to 
explain the binding of the inhibitor to the enzyme’s active site. The results show 
that the interaction of the bulky groups generates a conformational rearrangement 
within the active site pocket, which is likely to increase complementarities and con-
sequently activity. In addition, the score functions revealed that all the ligands stud-
ied have an affinity for the enzyme with lower interaction energies and therefore 
complementarity. We measured the distances between the R groups of each inhibitor 
and those of the side chains of the amino acids making up the active site, and these 
distances showed strong, medium and weak bonds.

In summary, the integration of in silico methods such as virtual screening and 
molecular dynamics simulations represents a powerful and efficient approach to 
new drug discovery, particularly for the development of therapies targeting xanthine 

Fig. 4  Variation in the potential energy of the a-therpineole + XO complex
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oxidase in the treatment of gout. The present theoretical and experimental studies 
indicate that the M. communis plant has great potential as a remedy for gout disease.

Supplementary Information The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s11144- 024- 02731-w.

Data availability The data is available for this publication.
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